PB1-F2 Proteins from H5N1 and 20th Century Pandemic Influenza Viruses Cause Immunopathology
نویسندگان
چکیده
With the recent emergence of a novel pandemic strain, there is presently intense interest in understanding the molecular signatures of virulence of influenza viruses. PB1-F2 proteins from epidemiologically important influenza A virus strains were studied to determine their function and contribution to virulence. Using 27-mer peptides derived from the C-terminal sequence of PB1-F2 and chimeric viruses engineered on a common background, we demonstrated that induction of cell death through PB1-F2 is dependent upon BAK/BAX mediated cytochrome c release from mitochondria. This function was specific for the PB1-F2 protein of A/Puerto Rico/8/34 and was not seen using PB1-F2 peptides derived from past pandemic strains. However, PB1-F2 proteins from the three pandemic strains of the 20(th) century and a highly pathogenic strain of the H5N1 subtype were shown to enhance the lung inflammatory response resulting in increased pathology. Recently circulating seasonal influenza A strains were not capable of this pro-inflammatory function, having lost the PB1-F2 protein's immunostimulatory activity through truncation or mutation during adaptation in humans. These data suggest that the PB1-F2 protein contributes to the virulence of pandemic strains when the PB1 gene segment is recently derived from the avian reservoir.
منابع مشابه
Caspase Cleavage Motifs of Influenza Subtypes Proteins: Alternations May Switch Viral Pathogenicity
Background and Aims: The caspases are unique proteases that mediate the host cell apoptosis during viral infection. In this study, we identified the caspase cleavage motifs of H5N1 and H9N2 influenza viruses isolated during 1998-2012. Materials and Methods: Amino acid sequences of the eleven proteins encoded by the viruses as the caspase substrates downloaded from NCBI. The caspase cleavage mot...
متن کاملDifferential Contribution of PB1-F2 to the Virulence of Highly Pathogenic H5N1 Influenza A Virus in Mammalian and Avian Species
Highly pathogenic avian influenza A viruses (HPAIV) of the H5N1 subtype occasionally transmit from birds to humans and can cause severe systemic infections in both hosts. PB1-F2 is an alternative translation product of the viral PB1 segment that was initially characterized as a pro-apoptotic mitochondrial viral pathogenicity factor. A full-length PB1-F2 has been present in all human influenza p...
متن کاملKinetic Characterization of PB1-F2-Mediated Immunopathology during Highly Pathogenic Avian H5N1 Influenza Virus Infection
The PB1-F2 protein encoded by influenza A viruses can contribute to virulence, a feature that is dependent of its sequence polymorphism. Whereas PB1-F2 from some H1N1 viruses were shown to exacerbate the inflammatory response within the airways, the contribution of PB1-F2 to highly pathogenic avian influenza virus (HPAIV) virulence in mammals remains poorly described. Using a H5N1 HPAIV strain ...
متن کاملComprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th‐century pandemics
BACKGROUND PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various infl...
متن کاملEmergence of Highly Pathogenic Avian Influenza A(H5N1) Virus PB1-F2 Variants and Their Virulence in BALB/c Mice.
UNLABELLED Influenza A viruses (IAVs) express the PB1-F2 protein from an alternate reading frame within the PB1 gene segment. The roles of PB1-F2 are not well understood but appear to involve modulation of host cell responses. As shown in previous studies, we find that PB1-F2 proteins of mammalian IAVs frequently have premature stop codons that are expected to cause truncations of the protein, ...
متن کامل